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By employing a recent proposal �R. Filip, P. Marek, and U.L. Andersen, Phys. Rev. A 71, 042308 �2005��
we experimentally demonstrate a universal, deterministic, and high-fidelity squeezing transformation of an
optical field. It relies only on linear optics, homodyne detection, feedforward, and an ancillary squeezed
vacuum state, thus direct interaction between a strong pump and the quantum state is circumvented. We
demonstrate three different squeezing levels for a coherent state input. This scheme is highly suitable for the
fault-tolerant squeezing transformation in a continuous variable quantum computer.
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The implementation of a direct nonlinear quantum opera-
tion is often hampered by decoherence due to inevitable
practical imperfections in physical systems. Because of the
necessity of invoking such unitary transformations in a fault-
tolerant quantum information processor, the future of devel-
oping such units was not too bright. However, new optimism
arose from the introduction of the so-called off-line schemes,
where a nonlinear transformation is executed on a quantum
state through simple linear interference with some off-line
prepared ancillas followed by detection and feedforward
�1–5�. The significance of that approach is that the nonlinear
transformation need not be performed directly onto the frag-
ile quantum state, but is accomplished by tailoring the off-
line resource states that can be prepared at any time.

The first simple example of such an off-line scheme is
teleportation, �6� which demonstrates the implementation of
the most trivial unitary quantum operation—namely the
identity operation: The off-line resource is a bipartite en-
tangled state which is detected jointly with the fragile quan-
tum information in a Bell measurement and the classical out-
comes are fed forward to finalize the identity �or
teleportation� operation. Remarkably it was found that by
manipulating the off-line entangled state in the teleporter it is
possible to implement any unitary transformation through
teleportation. This was first realized for qubits �1� and sub-
sequently used in the linear optical quantum computer �2�,
and later extended to continuous variables �CVs� which ben-
efit from the easy Bell measurement �3�.

Such a teleportation-based off-line scheme can, for ex-
ample, be used for the implementation of a unitary and non-
linear squeezing operation. It was, however, realized in Ref.
�7� that a much simpler off-line scheme relying only on a
single vacuum squeezed ancilla suffices to implement the
squeezing operation �see Fig. 1�a��. In essence, this simple
setup allows for the experimentally feasible fault-tolerant
squeezing transformation of quantum information, and it can
be seen as the CV analog to the one-qubit teleportation ap-
proach in Ref. �8�.

In this Rapid Communication we construct a squeezing
transformation using the off-line approach proposed in Ref.

�7�, and we demonstrate its function with coherent state in-
puts. Such a transformation is ideally described by a single
mode Bogoliubov transformation, which maps the input
Wigner function W�x , p� onto W��x , p�=W�xer , pe−r� �9�
where x and p represent the amplitude and phase quadrature
of the field and r is the squeezing factor. Although this
simple transformation is standard in any textbook on quan-
tum optics, its experimental realization for arbitrary inputs
�that is quantum information� has remained extremely chal-
lenging. Previously demonstrated squeezing transformations
have either been suffering from large decoherence �as is the
case for fiber or cavity implementations�, thus corrupting the
fragile quantum information of a quantum state, or been us-
ing an input dependent nondeterministic approach �10�. In
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FIG. 1. �a� Schematic of high-fidelity squeezing. �b� Experimen-
tal setup for high-fidelity squeezing. A variable beam splitter is
realized by a half-wave plate �HWP� and two polarizing beam split-
ters �PBS�. EOM: electro-optic modulator, LO: local oscillator, and
OPO: optical parametric oscillator.
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contrast to previous implementations, the squeezing transfor-
mation demonstrated in this Rapid Communication is deter-
ministic and it processes quantum information with very
high fidelity. It is therefore the first demonstration of a near
fault tolerant squeezing transformation that could be used in
CV quantum computation �5,11,12�.

The scheme is illustrated in Fig. 1 and goes as follows.
The input state under interrogation is combined with a
squeezed vacuum at a beam splitter. A quadrature to be an-
tisqueezed is measured using homodyne detection, and after
appropriate rescaling of the outcomes the remaining field is
displaced accordingly. Mathematically, the transformation
can easily be derived in the Heisenberg picture. First, we
consider the input-output relations for the beam splitter:

x̂i� = �Tx̂i + �1 − Tx̂a, p̂i� = �Tp̂i + �1 − Tp̂a, �1�

x̂a� = �Tx̂a − �1 − Tx̂i, p̂a� = �Tp̂a − �1 − Tp̂i , �2�

where x̂ and p̂ represent the quadratures to be squeezed and
antisqueezed, the indices “i” and “a” refer to the input and
ancillary mode, respectively, and T is the transmittance of the
beam splitter. The quadratures of the ancilla are written as
�x̂a , p̂a�= �x̂a

�0�e−ra , p̂a
�0�era� where ra is the squeezing parameter

and x̂a
�0� and p̂a

�0� represent vacuum fluctuations. In the re-
flected part, the quadrature p̂a� is measured using homodyne
detection. The measurement outcomes are subsequently res-
caled by a factor denoted by g and finally used to displace
the remaining part of the system, which is equivalent to the
transformation x̂i�→ x̂i�= x̂i� and p̂i�→ p̂i�= p̂i�+gp̂a�. By
choosing g=−��1−T� /T, we arrive at the following
input-output relations:

x̂i� = �Tx̂i + �1 − Tx̂a
�0�e−ra, �3�

p̂i� =
1
�T

p̂i . �4�

In the limit of the infinitely squeezed ancilla, corresponding
to ra→�, the transformation coincides with a perfect unitary
squeezing operation, with the actual squeezing parameter r
=−ln �T which is directly controlled by the transmittance of
the beam splitter. Furthermore, the quadrature being
squeezed can also be easily controlled through adjustment of
the relative phase between the signal and the squeezed an-
cilla and correspondingly the measured quadrature in the
feedforward loop �7�. Therefore full control of the squeezing
process is accessed through simple operations on linear pas-
sive devices. Let us note that by changing some of the set-
tings of the setup �such as the local oscillator phase, the
feedforward gain, and the ancilla state� the setup can func-
tion as a nonunitary noiseless amplifier �13�, a nonunitary
quantum nondemolition measurement device �14�, or as a
squeezed state purifier �15�.

In a realistic situation, the ancilla state is not infinitely
squeezed and some extra quantum noise will inevitably be
added to the squeezed quadrature as indicated by the second
term in Eq. �3�. Note that the noise suppression performance
never goes further than that of the ancilla. In contrast, the

imperfections of the ancilla state do not degrade the quality
of the transformation of the antisqueezed quadrature as well
as the mean values: The excess noise of the ancilla is not
coupled into the mode nor does it disturb the mean value
transformation.

The operation described above is universal and thus
squeezes all input states. In the following experimental in-
vestigation, however, we consider the squeezing of particular
states, namely coherent states. To ensure that the coherent
states are truly pure, we define them to be a sideband at a
radiofrequency relative to the carrier of a laser beam. This
beam as well as other auxiliary beams are delivered by a
Ti:sapphire laser operating at 860 nm. The experiment is di-
vided into three parts; preparation, processing, and verifica-
tion which will now be discussed.

Preparation. In the preparation stage, we generate the in-
put coherent state and the squeezed ancilla state. The coher-
ent state is prepared by traversing a part of the laser beam
through an electro-optic modulator operating at 1 MHz and
set to modulate the amplitude and phase simultaneously. As a
result, a true coherent state is generated at a 1 MHz sideband
and we assume the bandwidth to be 30 kHz. The power of
the optical carrier is about 3 �W whereas the power of the
sideband is about 15 dB above the corresponding shot noise
level. The ancillary squeezed state is produced in an optical
parametric oscillator �OPO�. It is a 500 mm long bow-tie-
shaped cavity consisting of two plane mirrors and two mir-
rors with a 50 mm radius of curvature. The nonlinear crystal
is a 10 mm periodically poled KTiOPO4 �PPKTP� crystal
�see �16� for details�. We pump the OPO with light at 430 nm
stemming from a second harmonic generator with the same
configuration as the OPO cavity but with a KNbO3 crystal
and pumped with the light from the Ti:sapphire laser. To
monitor and lock the squeezing phase we inject a weak co-
herent beam to the OPO. The output from the OPO and the
coherent state are then directed to the processing part. They
have 97 and 143 kHz modulation sidebands for phase lock-
ing.

Processing. At this stage the actual squeezing transforma-
tion is implemented. First the two states from the preparation
stage merge at a variable beam splitter composed of a half-
wave plate �HWP� sandwiched between two polarizing beam
splitters �PBS�. The beam splitting ratio is thus easily con-
trolled via a wave plate rotation. One output of the beam
splitter is directed to a homodyne detector which measures
the p quadrature. The visibility between the output and a
local oscillator is 96% and the quantum efficiency of the
detectors is more than 99%. The measurement outcomes are
amplified electrically in a low-noise amplifier and subse-
quently used to drive a phase modulator which displaces an
auxiliary beam. Finally, the displacement of the signal is
achieved by combining it with the displaced auxiliary field
using a highly asymmetric beam splitter �99/1�.

Verification. In the final stage of the experiment, the pro-
tocol is verified by measuring the input states as well as the
squeezed output states. The states are fully characterized by
balanced homodyne detection. The visibility between the
squeezed output beam and a local oscillator is 96% and the
total propagation efficiency is 96%. The electronic noise is
always 19 dB smaller than the optical noise. After detection
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the photocurrents are used to reconstruct the quantum states:
The 1 MHz component of the measured output signal is ex-
tracted by means of a lock-in detection scheme. The signal is
mixed with a 1 MHz sine-wave signal from a function gen-
erator, low pass filtered �30 kHz�, and finally digitized and
fed into a computer with the sampling rate of 300 kHz.

First we present in Fig. 2 the raw data of the time resolved
measurements of the input states and the output states. The
time series for the input coherent states �Fig. 2�a�� and the
vacuum squeezed states �Fig. 2�e�� are measured by adjust-
ing the beam splitter transmittance to unity and zero, respec-
tively �and blocking the displacement beam�. We activate the
squeezing transformation and measure the time series for
three different transmittances, namely 0.75, 0.50, and 0.25,
the results of which are shown in Figs. 2�b�–2�d�, respec-
tively. It is evident from the plots that the input coherent
states become more and more deformed as the transmittance
decreases �and thus the squeezing degree increases�. In Fig.
2�f�, we present the reconstructed Wigner function of the
transformed states with T=0.25.

As indicated by the reconstructed Wigner function, the
involved states are Gaussian. With this a priori information
the states are completely characterized by its first two mo-
ments. Due to the symmetry of the states �squeezed in x and
antisqueezed in p� it suffices to evaluate the mean values and

variances of x and p. Results of such evaluations are shown
in Figs. 3 and 4.

In Fig. 3 the phase space diagrams of the input coherent
states as well as the output states are shown by ellipses,
which correspond to the cross sections of their respective
Wigner functions. When a coherent state is unitarily
squeezed the amplitude is transformed along a hyperbolic
curve, as shown by the dotted line. The four ellipses corre-
spond to �from the right� the input coherent states, the
squeezed outputs with T=0.75, 0.50, and 0.25, respectively,
and their centers, marked by dots, represent the measured
averages. The circles represent the data obtained without the
feedforward. The lengths of the major and minor axes of the
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(a) input coherent state
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(b) squeezed with T=0.75
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(c) squeezed with T=0.50
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(d) squeezed with T=0.25
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(e) ancilla squeezed vacuum (f) Wigner function for T=0.25
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FIG. 2. Results of the homodyne measurements. �a�–�e� Raw
quadrature data as a function of the phase of the local oscillator and
�f� is the reconstructed Wigner function �using inverse Radon trans-
formation �9�� for one realization of the experiment.
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FIG. 3. Phase space representation of the experimental results.
The phase space is normalized so that the standard deviation of the
vacuum fluctuation is 1 /2 ��=1 /2�. Note that the measured results
are directly plotted without accounting for detection and propaga-
tion losses.
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FIG. 4. The noise powers of the squeezer outputs relative to the
shot noise limit. We measure 0.7, 1.6, and 2.5 dB for the squeezed
quadrature and 1.3, 3.0, and 5.8 dB for the antisqueezed quadrature.
The two quadrature variances of the input coherent states are equal
to those of vacuum within ±0.1 dB.
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ellipses are the measured standard deviations of x and p.
Obviously the mean values are transformed almost ideally.

In Fig. 4 the noise powers of the squeezed and anti-
squeezed quadratures are plotted as a function of the trans-
mittance. The three curves represent theoretical predictions
for the noise power of the antisqueezed quadrature �curve i�,
the squeezed quadrature with the ancilla 5.1 dB squeezed
�curve ii�, and infinitely squeezed �curve iii�. Note again that
the antisqueezed noise does not depend on the ancilla. Ex-
perimental data taken with and without the feedforward in
place are also shown in Fig. 4: The noise powers of x �p�
with feedforward are indicated by dots �closed diamonds�,
and without feedforward by circles �open diamonds�. We see
that the antisqueezed noise of the ancilla is cancelled and the
transformation in p becomes almost ideal after the feedfor-
ward. The noise powers of the squeezed qudrature, however,
deviate from the ideal operation due to the finite squeezing in
the ancilla states. Furthermore, we observe a small degrada-
tion of the noise suppression due to some imperfections of
the feedforward, such as phase fluctuation.

We now calculate the fidelities �17� of these transforma-
tions. For the case of Gaussian states the fidelity between the
ideal squeezed state, ��id�, and the actual obtained mixed
state, �̂out, is given by �in the unit of �=1 /2�

F = ��id��̂out��id� =
1

2��Vout
x + Vid

x ��Vout
p + Vid

p �

�exp	−
��xout� − �xid��2

2�Vout
x + Vid

x �
−

��pout� − �pid��2

2�Vout
p + Vid

p � 
 , �5�

where the subscripts “id” and “out” denote the ideal squeez-
ing and the experimental output, respectively, and V denotes
the variance. Actually, due to small propagation and detec-
tion losses in the experiment, the fidelity ultimately depends
on the input state. We therefore quantify the individual single
shot fidelities for the inputs considered in the experiment,
though the average fidelity will be found by integrating the
fidelity in Eq. �5� over all possible input states. From the

measured means and variances we compute the fidelities be-
tween the ideally squeezed states of the inferred inputs �ac-
counting for losses� and the directly measured squeezed
states, and we find 94% ±1% for T=0.75 �1.2 dB squeez-
ing�, 89% ±1% for T=0.50 �3.0 dB squeezing�, and
78% ±2% for T=0.25 �6.0 dB squeezing�. We note that the
fidelity between the measured input states and the inferred
ones is found to be 97% ±1%. For comparison, the theoreti-
cally calculated fidelities with vacuum ancilla states �which
correspond to the classical limits� are 93%, 82%, and 63%
for the transformations corresponding to 1.2, 3.0, and 6.0 dB
squeezing, respectively.

In summary, we have succeeded in demonstrating deter-
ministic and universal squeezing transformation using a
feedforward technique. The squeezing operation associated
with three different squeezing degrees corresponding to 1.2,
3.0, and 6.0 dB were demonstrated and quantum noise sup-
pressions of 0.7, 1.6, and 2.5 dB below the shot noise were
obtained, yielding the fidelities 94% ±1%, 89% ±1%, and
78% ±2%, respectively. Although the transformation only
was tested for a single coherent state, it will work equally
well for any other state due to its universality.

Finally, we should note that the high-fidelity squeezer in
this work completes the set of demonstrated Gaussian opera-
tions �11,18�. An arbitrary multimode Gaussian transforma-
tion can be physically generated by the use of phase space
displacement and rotation, beam splitting interaction, phase
insensitive amplification �19�, and universal squeezing trans-
formation. With the work presented in this Rapid Communi-
cation, we therefore pave the way for the experimental dem-
onstration of new interesting CV Gaussian protocols such as
the CV controlled-NOT gate �7� and eventually quantum
computation.
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